Звоните! С 7:00-23:00 8(495)220-16-19

Свойства алюминия механические


Механические свойства алюминия

Механические свойства алюминия, как и других материалов – это свойства, которые связаны с упругой и неупругой  реакцией материала на приложение к нему нагрузки, в том числе, зависимость между напряжениями и деформациями. Примерами механических свойств являются:

Механические свойства часто ошибочно относят к физическими свойствам.

Механические свойства материалов, в том числе, алюминия и его сплавов, которые получают путем испытания материала на растяжение, например, модуль упругости при растяжении, прочность при растяжении, предел текучести при растяжении и относительное удлинение называют механическими свойствами при растяжении.

Модуль упругости

Модуль упругости, который часто называют модулем Юнга – это отношение напряжения, которое приложено к материалу, к соответствующей деформации в том интервале, когда они являются прямо пропорциональными друг к другу.

Различают три типа напряжений и соответственно три типа модулей упругости для любого материала, в том числе для алюминия:

Таблица — Модули упругости при растяжении алюминия и других металлов [1]

 

Прочность при растяжении

Отношение максимальной нагрузки перед разрушением образца при испытании его на растяжение на исходную площадь поперечного сечения образца. Также применяются термины «предел прочности при растяжении» и «временное сопротивление разрыву».

Предел текучести

Напряжение, которое необходимо для достижения заданной малой пластической деформации в алюминии или другом материале при одноосной растягивающей или сжимающей нагрузке.

Если пластическая деформация под воздействием растягивающей нагрузки задается как 0,2 %, то применяется термин «предел текучести 0,2 %» (Rp0,2).

Рисунок — Типичная диаграмма напряжение-деформация для алюминиевых сплавов

Удлинение (при разрыве)

Часто называется «относительным удлинением». Увеличение расстояния между двумя метками на испытательном образце, которое возникает в результате деформирования образца при растяжении до разрыва между этими метками.

Величина удлинения зависит от размеров поперечного сечения образца. Например, величина удлинения, которая получена при испытании алюминиевого листового образца будет ниже для тонкого листа, чем для толстого листа. Тоже самое относится и к прессованным алюминиевым профилям.

Удлинение А

Удлинение в процентах после разрыва образца при исходном расстоянии между метками  5,65 · √ S0, где S0 – исходная площадь поперечного сечения испытательного образца. Устаревшее обозначение этой величины А5 в настоящее время не применяется. Аналогичная величина в русскоязычных документах обозначается δ5.

Легко проверить, что для круглых образцов это расстояние между исходными метками вычисляется как 5·d.

Удлинение А50мм

Удлинение в процентах после разрыва образца по отношению к исходной длине между метками 50 мм и постоянной исходной ширине испытательного образца (обычно 12,5 мм). В США применяется расстояние между метками в 2 дюйма, то есть 50,8 мм.

Сдвиговая прочность

Максимальное удельное напряжение, то есть максимальная нагрузка, разделенная на исходную площадь поперечного сечения, которую выдерживает материал при испытании на сдвиг. Сдвиговая прочность обычно составляет 60 % от прочности при растяжении.

Сдвиговая прочность является важной характеристикой качества заклепок, в том числе, алюминиевых.

Коэффициент Пуассона

Отношение между продольным удлинением и поперечным сокращением сечения при одноосном испытании. Для алюминия и всех алюминиевых сплавов во всех состояниях коэффициент Пуассона обычно составляет 0,33 [2].

Твердость

Сопротивление металла пластическому деформации, обычно измеряемое путем отпечатка.

Твердость Бринелля (HB)

Сопротивление проникновению сферического индентора при стандартизированных условиях.

Для алюминия и алюминиевых сплавов твердость НВ приблизительно равна 0,3·Rm, где Rm – предел прочности при растяжении, выраженный в МПа [2].

Если применяется индентор из карбида вольфрама, то применяется обозначение HBW.

Твердость Викерса (HV)

Сопротивление проникновению алмазного индентора в виде квадратной пирамиды при стандартизированных условиях. Твердость HV приблизительно равна 1,10·HB [2].

Усталость

Тенденция металла разрушаться при длительных циклическом напряжении, которое значительно ниже предела прочности при растяжении.

Усталостная прочность

Максимальная амплитуда напряжения, которую может выдерживать изделие при заданном количестве циклов нагружения. Обычно выражается как амплитуда напряжения, которая дает 50%-ную вероятность разрушения после заданного количества циклов нагружения [2].

Усталостная выносливость

Предельное напряжение, ниже которого материал будет выдерживать заданного количество циклов напряжения [2].

Механические свойства алюминия и алюминиевых сплавов

В таблицах ниже [3] представлены типичные механические свойства алюминия и алюминиевых сплавов:

Механические свойства представлены отдельно:

Эти механические свойства — типичные. Это означает, что они годятся только для сравнительных целей, а не для инженерных расчетов. В большинстве случаев они являются средними значениями для различных размеров изделий, их форм и методов изготовления.

Источник:

aluminium-guide.ru

Механические свойства алюминия

Марка

Сумма примесей, %

Состояние

σв

σ0,2

δ,%

HB

MПа

А995

А5

АО

0,005

0.5

1

Литой

Литой

Литой

Деформиро­ванный и отожженный

Деформиро­ванный

50 75 90 90

140

-

-

-

30

100

45

29

25

30

12

150 200

250

250

320

Из других свойств алюминия следует от­метить его высокую отражательную способность, в связи с чем он используется для прожекторов, рефлекторов, экранов телевизоров. Алюминий имеет малое эффективное поперечное сечение захвата нейтронов. Он хорошо обрабатывается давле­нием, сваривается газовой и контактной сваркой, но плохо обрабатывается резанием. Алюминий имеет большую усадку затверде­вания. Высокая теплота плавления и те­плоемкость способствуют медленному осты­ванию алюминия из жидкого состояния, что дает возможность улучшать отливки из алю­миния и его сплавов путем модифицирова­ния, рафинирования и других технологиче­ских операций.

Общая характеристика и классифика­ция алюминиевых сплавов. Алюми­ниевые сплавы характеризуют высокой удельной прочностью, способностью со­противляться инерционным и динамиче­ским нагрузкам, хорошей технологич­ностью. Временное сопротивление алю­миниевых сплавов достигает 500 — 700 МПа при плотности не более 2850 кг/м3. По удельной прочности неко­торые алюминиевые сплавы приближаются или соот­ветствуют высокопрочным сталям. Большинство алюми­ниевых сплавов имеют хорошую корро­зионную стойкость (за исключением сплавов с медью), высокие теплопровод­ность и электропроводимость и хоро­шие технологические свойства (обра­батываются давлением, свариваются то­чечной сваркой, а специальные - сваркой плавлением, в основном хорошо обра­батываются резанием). Алюминиевые сплавы пластичнее магниевых и многих пластмасс. Большинство из них превос­ходят магниевые сплавы по коррозион­ной стойкости, пластмассы - по стабиль­ности свойств.

Основными легирующими элемента­ми алюминиевых сплавов являются Cu, Mg, Si, Mn, Zn; реже-Li, Ni, Ti. Многие легирующие элементы образуют с алю­минием твердые растворы ограничен­ной переменной растворимости и про­межуточные фазы. Это дает возможность под­вергать сплавы упрочняющей термиче­ской обработке. Она состоит из закалки на пересыщенный твердый раствор и естественного или искусственного ста­рения.

Легирующие элементы, особенно переходные, повышают температуру рекристаллизации алюминия. При кристаллизации они образуют с алюминием пересыщенные твердые растворы. В процессе гомогенизации и горячей обработки давлением проис­ходит распад твердых растворов с обра­зованием тонкодисперсных частиц интерметаллидных фаз, препятствующих прохождению процессов рекристаллиза­ции и упрочняющих сплавы. Это явле­ние получило название структурного упрочнения, а применительно к прес­сованным полуфабрикатам - пресс-эф­фекта. По этой причине некоторые алю­миниевые сплавы имеют температуру рекристаллизации выше температуры закалки. Для снятия остаточных напря­жений в нагартованных полуфабрикатах (деталях), полученных холодной обра­боткой давлением, а также в фасонных отливках проводят низкий отжиг.

Конструкционная прочность алюми­ниевых сплавов зависит от примесей Fe и Si. Они образуют в сплавах нераство­римые в твердом растворе фазы. Независи­мо от формы (пластинчатой, игольчатой и др.) кристаллы этих фаз снижают пла­стичность, вязкость разрушения, сопро­тивление развитию трещин. Легирова­ние сплавов марганцем уменьшает вредное влияние примесей, так как он связывает их в четвертую фазу, кристаллизирующуюся в ком­пактной форме. Однако более эффек­тивным способом повышения конструк­ционной прочности является снижение содержания примесей с 0,5-0,7% до 0,1-0,3% (чистый сплав), а иногда и до сотых долей процента (сплав повышенной чистоты). В первом случае к марке сплава добавляют букву Ч, например, Д16Ч, во втором-ПЧ, на­пример, В95ПЧ. Особенно значительно повышаются характеристики пластично­сти и вязкости разрушения в направле­нии, перпендикулярном пластической деформации.

Алюминиевые сплавы классифици­руют по технологии изготовления (де­формируемые, литейные, спеченные), способности к термической обработке (упрочняемые и неупрочняемые) и свой­ствам.

studfiles.net

Механические свойства алюминия

Механические свойства алюминия зависят от степени чистоты, вида и режимов его обработки, температуры и других факторов. С возрастанием степени чистоты прочность и твердость алюминия уменьшается, а пластичность возрастает. Модуль упругости при 20°С для металла чистотой 99,25 % составляет 69,65 ГПа, а для электролитически рафинированного алюминия чистотой 99,98 % 65,71 ГПа. С повышением температуры прочность алюминия  снижается,  а  пластичность  возрастает.

Зависимость механических свойств алюминия от степени его чистоты
Механическиесвойства  Степень чистоты алюминия, %
98,0 99,0 99,5 99,996 99,0
для литого в землю для литого в кокиль и для отожженного для деформированого
σв, МПа 88,3 83,3 73,5 49,0 88.3 137.3
δ, % 12,5 20,0 29,0 45,0 30 19
HB 274,6 245,2 284,4 137,3 245,2 313,8
Влияние температуры на механические свойства отожженной алюминиевой проволоки (0,20 % Si, 0,15 % Fe, следы меди)
Механические свойства Температура, °С
20 100 200    300 400 500 600 625
σв, МПа 74,4 65,3 55,0  37,3 28,4 21,3 12,2 8,3
δ, % 42,0 42,0 42,6  44,0 44,7 43,3 41,1 36,0
φ, % 94,2 94,8 95,1   96,5 98,1 99,0 99,4  99,7

При температуре вблизи точки плавления механические свойства загрязненного алюминия могут резко ухудшиться из-за ослабления границ зерен и межкристаллитного разрушения. Температура резкого разупрочнения у литого алюминия чистотой 99,988 % равна 654°С, а чистотой 99,998 % — 656°С.

Алюминий обладает высокой способностью к деформации; его пластичность возрастает с повышением чистоты. Алюминий чистотой 99,995 % можно подвергнуть очень большим вытяжкам, например с диаметра 80 до диаметра 0,1 мм.

При увеличении степени деформации прочность алюминия увеличивается, а удлинение уменьшается

Механические свойства Степень деформации, %
0 33 83
σв, МПа  53,9 89,2 119,6
δ, % 51,9 11,9 6,9

Легирование алюминия высокой степени чистоты повышает его прочность, но понижает его пластичность как при комнатной, так и при пониженных температурах . Например, добавление 0,5 % Fe к алюминию чистотой 99,99 % приводит к повышению σв с 88,3 до 219,7 МПа (нагартованный металл) и с 49,0 до 99,1 МПа (отожженный алюминий).

Механические свойства листов по ГОСТ 21631-76
Марка алюминия Состояние материала листов Обозначение сплава и состояние материала Состояние испытываемых образцов Толщина листа, мм Механические свойства при растяжении
Временное сопротивление σв, МПа (кгс/мм2) Предел текучести σв, МПа (кгс/мм2) Относительное удлинение при l=11,3√F* δ, %
Не менее
*Для испытаний используются длинные образцы, где l — участок образца в мм, на котором определяют удлинение,а F — начальная площадь поперечного сечения в рабочей части образца в мм2
А7, А6, A5, А0, АД0, АД1. АД00,

АД

Отожженные А7М, А6М, А5М, А0М,

АД0М, АД1М,

АД00М, АДМ
Отожженные От 0,3 до 0,5 Св. 0,5 » 0,9

» 0,9 » 10,5

60(6,0) 60(6,0)

6О(6,0)

— —

20,0 25,0

30,0

Полунагар- тованные А7Н2, А6Н2, А5Н2, А0Н2,

АДОН2, АД1Н2,

АД00Н2, АДН2
Полунагар- тованные От 0,8 до 4,5 100 (10,0) 6,0
Нагартован- ные А7Н, А6Н, А5Н, А0Н, АД0Н, АД1Н АД00H, АДН Нагартован- ные От 0,3 до 0,8 Св. 0,8 » 3,5

» 3,5 » 10,5

145 (15,0) 145(15,0)

130(13,0)

— —

3,0 4,0

5,0

Без термической

обработки

А7, А6, А5, А0, АД0, АД1, АД00, АД Без термической

обработки

От 5,0 до 10,5 70 (7,0) 16,0

www.metmk.com.ua

Свойства алюминия

Алюминий и его сплавы имеют малую плотность 2,64— 2,89 г/см3. Прочностные же свойства зависят от легирования, тер­мической обработки, степени деформирования и могут достигать высоких значений. По прочности многие алюминиевые сплавы не уступают конструкционным сталям.

Чистый алюминий (суммарное содержание примесей не более 0,05%) имеет гранецентрированную кубическую решетку с пара­метрами 4,04 А. Температура его плавления 659,8—660,2° С, температура кипения 1800—2500° С.

Для сплавов алюминия электропроводность составляет 30—50% электропроводности меди, а для чистого алюминия 62—65% электропроводности меди.

Алюминий окисляется с образованием окисной пленки Аl203, которая защищает его от дальнейшего окисления,Химический состав деформируемых и литейных алюминиевых сплавов по ГОСТам 4784—65 и 2685—63.

Из алюминиевых сплавов в основном изготовляют конструк­ции, работающие при сравнительно низких температурах не свыше 350° С. Так дуралюмин используют для работы при темпе­ратурах не более 200° С, сплавы типа В95 до 125° С, авиали до 80—100° С при длительной работе и до 200° С при кратковре­менной. Специальные сплавы САП (спеченный алюминиевый поро­шок) применяют и для работы при более высоких температурах. До температуры 100° С кратковременные механические свойства меняются мало. Обращает внимание высокое относительное удли­нение алюминиевых сплавов при низких температурах.

Характеристики длительной проч­ности термически не упрочняемых сплавов обычно ниже, чем тер­мически упрочняемых.

Длительные выдержки сплавов типа авиаль при температурах свыше 80—100° С приводят к их упрочнению и снижению пласти­ческих свойств. Исследованиями, проведенными авторами, уста­новлено, что относительное удлинение снижается при указанных условиях с 20—25% (исходное состояние после закалки и есте­ственного старения) до 1—2%. Подобное ухудшение свойств, при которых возможно хрупкое разрушение конструкций, яв­ляется существенным препятствием применения сплавов такого типа для работы при температурах выше 80° С.

Циклическая прочность 

Циклическая прочность деформируемых сплавов при симме­тричном изгибе на базе 5*108циклов составляет 3,5 кГ/мм2 для сплава А ДМ, 4,2—6,3 кГ/мм2 для сплава АДН, 5—6,5 кГ/мм2 для сплава АМцАМ, 15 кГ/мм2 для сплава В95.

Области применения литейных сплавов различны. Сплавы группы I рекомендуют для литья в песчаные формы, кокиль и для литья под давлением. Сплав АЛ22 обычно применяют в закален­ном состоянии, а сплав АЛ23 и АЛ29 — в литом. Сплавы группы II имеют высокие литейные свойства благодаря наличию в сплавах двойной эвтектики, которая уменьшает также литейную усадку и склонность к образованию горячих трещин. Сплавы AЛ2, АЛ4 и АЛ9 обладают повышенной коррозионной стойкостью, поэтому их применяют для изделий, работающих во влажной и морской средах. С целью получения заданных механических свойств отливки подвергают термической обработке по различ­ным режимам.

Сплавы группы III обладают высокими механи­ческими свойствами, особенно пределом текучести и повышенной жаропрочностью. У этих сплавов пониженные литейные свойства и коррозионная стойкость, кроме того, они склонны к образова­нию горячих трещин. Для выполнения отливок сложной формы такие сплавы не рекомендуют. Сплав АЛ7 применяют для деталей, испытывающих средние нагрузки и температуры не свыше 200° С. Сплав АЛ 19 по сравнению с АЛ 17 имеет более высокую жаропроч­ность (в 2 раза), и применяют его для силовых деталей в условиях статических и ударных нагрузок при температурах до 300° С.

Сплавы группы IV применяют для всех способов литья. По ли­тейным свойствам они менее технологичны, чем сплавы II.

Сплавы группы V применяют для самых разнообразных дета­лей, работающих при высоких температурах. К этой группе относятся также самозакаливающиеся сплавы.

Механические свойства

Механические свойства всех вышеуказанных, литейных спла­вов зависят от режимов термической обработки, определяющей структурное и фазовое состояние сплавов.

Высокая коррозионная стойкость алюминия объясняется обра­зованием окисиой пленки Аl203. Коррозионная стойкость алю­миния зависит от влияния агрессивной среды на растворимость защитной окисной пленки, от чистоты обработки поверхности и режима термической обработки. Чистый алюминий обладает высокой стойкостью в сухом и влажном воздухе. В азотной кислоте концентрации 30—50% при увеличении температуры скорость коррозии алюминия возрастает. При концентрации азотной кис­лоты выше 80% коррозия резко снижается. Алюминий обладает высокой стойкостью в разбавленной серной кислоте и в концен­трированной при 20° С. Средние концентрации серной кислоты (более 40%) наиболее опасны для алюминия. При комнатных тем­пературах алюминий устойчив в фосфорной и уксусных кислотах. Такие, как муравьиная, щавелевая, трихлоруксусная и другие хлороорганические кислоты значительно разрушают алюминий. В растворах едких щелочей окисная пленка алюминия раство­ряется. Растворы углекислых солей калия и натрия оказывают меньшее влияние на скорость коррозии алюминия.

Алюминий при температурах до 300° С обладает хорошей стойкостью в жидких металлических средах, например, натрии.

Коррозионная стойкость алюминия в воде и водяном паре при повышенных температурах (выше 200° С) зависит от чистоты алюминия. Если происходит движение среды, то скорость корро­зии повышается в 10—60 раз.

Основными видами коррозии алюминиевых сплавов является межкристаллитная коррозия и коррозия под напряжением. Для повышения коррозионных свойств применяют защитные покрытия, такие, как плакирование, оксидные пленки, лакокрасочные по­крытия, смазки, хромовые или никель-хромовые гальванические покрытия.

Технология производства

Технология производства и термическая обработка могут оказывать существенное влияние на коррозионные свойства спла­вов. Сплавы АД, АД1, АМц, АМг2 и АМгЗ мало чувствительны к методам производства. Коррозионная стойкость сплавов АМг5, АМгб во многом зависит от методов производства. У этих сплавов при длительном нагреве на 60—70° С проявляется склонность к межкристаллитной коррозии и коррозии под напряжением.

Сплавы Д1, Д18, Д16 и типа В95 имеют пониженную корро­зионную стойкость. Подобные сплавы применяют с соответствую­щей защитой от коррозии. Сплавы типа авиаль обладают высокой коррозионной стойкостью в воде высокой чистоты с до­бавлением углекислого газа при температурах до 100° С.

При изучении влияния облучения на некоторые характеристики алюминия установлено, что после облучения интегральным пото­ком 1,1 х 1019 нейтрон/см2 при 80° С критическое напряжение сдвига увеличивается в 5 раз. При этом электросопротив­ление алюминия повышается на 30%. Влияние облучения на электрическое и критическое сопротивления сдвигу снимается при температуре около 60° С.

Из разработанных свариваемых, термически обрабатываемых, самозакаливающихся при сварке сплавов, наиболее характерны сплавы системы Аl—Zn—Mg. Однако, обладая удовлетвори­тельными прочностными свойствами, они склонны к коррозии под напряжением и замедленному разрушению. Такая склонность вызвана переходом от зонной к фазовой стадии старения даже при комнатных температурах эксплуатации сварных соединений. Поэтому сплавы системы Аl—Zn-Mg можно применять в усло­виях низких температур, исключающих переход к фазовому ста­рению при низком уровне сварочных напряжений. Содержание цинка и магния должно быть при этом минимальным.

Высокая стойкость 

К самозакаливающимся сплавам относится сплав 01911, по химическому составу он является среднелегированным сплавом системы Аl—Zn-Mg. Высокая стойкость против коррозии под напряжением обеспечивается суммарным содержанием цинка и магния до 6,5% и дополнительным введением марганца, хрома, меди и циркония. Причем медь ухудшает свариваемость сплава, поэтому для его сварки применяют проволоку марки 01557, аналогичную по химическому составу сплаву АМг5, но с добавкой циркония й хрома. Сплавы Д20 и АК8 достаточно прочны, но имеют низкую общую коррозионную стойкость. Они обладают высокой стойкостью против коррозии под напряжением и замедленного разрушения.

Перспективными являются спеченные сплавы. К числу жаро­стойких относятся сплавы типа САП, которые можно применять для конструкций, работающих при температурах до 400—500° С. САП содержит до 13% тугоплавкой окисной фазы, поэтому тем­пература плавления его очень высокая (2000° С).

Из сплавов САП-1 (6,0—9,0% А1203) и САП-2 (9,1 — 13,0% А1203) изготовляют такие же полуфабрикаты, как из алю­миниевых сплавов. Сплав САП-3 применяют только для прессо­ванных полуфабрикатов. Наибольшая масса прессованных полу­фабрикатов до 400 кг. Размеры изготовляемых листов 1000 X Х7000 мм при толщине от 0,8 до 10 мм.

Сплавы имеют высокие прочностные свойства. Так у сплава САП-1 при 20° С ов = 35 кГ/мм2, а у САП-3  40 кГ/мм2. Подобными свойствами обладает сплав САС-1 (25—30% Si и 7% Nі), получаемый из распыленного порошка. Он износостоек, достаточно прочен (

svarder.ru


Смотрите также